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Contrastive machine learning reveals the structure
of neuroanatomical variation within autism
Aidas Aglinskas*, Joshua K. Hartshorne, Stefano Anzellotti

Autism spectrum disorder (ASD) is highly heterogeneous. Identifying systematic individual differences
in neuroanatomy could inform diagnosis and personalized interventions. The challenge is that these
differences are entangled with variation because of other causes: individual differences unrelated to
ASD and measurement artifacts. We used contrastive deep learning to disentangle ASD-specific
neuroanatomical variation from variation shared with typical control participants. ASD-specific
variation correlated with individual differences in symptoms. The structure of this ASD-specific variation
also addresses a long-standing debate about the nature of ASD: At least in terms of neuroanatomy,
individuals do not cluster into distinct subtypes; instead, they are organized along continuous dimensions
that affect distinct sets of regions.

P
sychiatric disorders affect millions of
people worldwide. Heterogeneity is a
major obstacle to understanding them:
Individuals diagnosed with the same
disorder often present with different be-

havioral symptoms and genetic variants (1).
We investigated heterogeneity within autism
spectrum disorder (ASD), a prevalent neuro-
developmental condition (2) characterized by
impaired social interactions, restricted pat-
terns of behavior, and communication def-
icits (3). Individuals with ASD differ in the
severity of behavioral symptoms (4), in their
genetics (5), and in neuroanatomy (6).
Understanding neuroanatomical heteroge-

neity within ASD could be pivotal to improv-
ing quality of life in affected individuals, by
leading to more specific diagnoses and tar-
geted behavioral interventions (7, 8). However,
researchers have not yet identified systematic
neuroanatomical variation that correlates with
symptoms and that generalizes across differ-
ent groups of participants (6).
We hypothesized that ASD-specific varia-

tion has been obscured by other factors that
lead brains to vary. Brains differ from one
to another because of numerous genetic and
environmental causes unrelated to ASD (9).
Neuroanatomical data from different indi-
viduals also varies because of methodological
artifacts, such as systematic differences be-
tween scanners and scanning sites (10). ASD-
specific variation may be difficult to identify
within this mass of irrelevant variation.
Methods in use now for addressing these
problems remain unsatisfactory. For instance,
matching ASD and typical control (TC) par-
ticipants works in theory, but it assumes that
we know which factors we need to match.

However, brain anatomy is shaped by a mul-
titude of genetic and environmental factors
(9), some of which are unknown, undermin-
ing any attempt at matching.
To better characterize ASD-specific neuro-

anatomical variation, we disentangled it from
variation that is common to the general pop-
ulation using contrastive variational autoen-
coders (CVAEs) (11, 12). CVAEs take as inputs
samples from two distinct populations and
isolate variation specific to one population
from variation common to both (fig. S1).
We used CVAEs to disentangle “ASD-specific”
neuroanatomical variation from variation
“shared” by both ASD and TC participants,
representing each as a distinct set of latent
features (Fig. 1A). First, we validated the fea-
tures by confirming that the ASD-specific
features are differentially related to clinical
symptoms, whereas the shared features are
differentially related nonclinical properties.
We replicated the results with a zero-free-
parameter generalization to an independent
dataset. Next, we applied cluster analysis to
the ASD-specific features to determine whether
there are distinct subtypes of ASD neuro-
anatomy. Finally, we leveraged the properties
of the CVAE to identify brain regions that vary
systematically within the ASD population.

Results
ASD-specific neuroanatomy relates
to clinical variation

We used the Autism Brain Imaging Data Ex-
change I (ABIDE I) magnetic resonance imag-
ing (MRI) dataset [(13); 470 ASD participants,
512 TCs] to train a CVAE and a noncontrastive
VAE that has a single set of latent features but
is matched to the CVAE in the number of pa-
rameters and in the number of latent features.
The noncontrastive VAE allows us to test
whether associations between neuroanatomy

and ASD symptoms can be identified using
variational autoencoding alone, without dis-
entangling ASD-specific and shared variation.
Thus, to establish a baseline, we first report

the noncontrastive VAE results. We used rep-
resentational similarity analysis (RSA) (14)
to test whether the VAE’s neuroanatomical
features correlate with individual variation in
the ASD participants’ nonclinical and clinical
characteristics, such as scanner type, age,
Vineland adaptive behavior scores, and Autism
Diagnostic Observation Schedule (ADOS)
scores (a numerical measure of ASD symp-
tom severity). We first calculated the pair-
wise dissimilarity between participants with
respect to the VAE neuroanatomical features
and obtained a dissimilarity matrix. We then
repeated this process for each nonclinical and
clinical characteristic (Fig. 1B). Finally, we
compared the VAE dissimilarity matrix to
the matrices for each individual characteristic
using the Kendall rank correlation coefficient
(Kendall t).
The VAE features showed Kendall t corre-

lations with some of the nonclinical charac-
teristics, such as scanner type (t = 0.04, t9 =
16.29, p < 0.001), age (t = 0.03, t9 = 8.27, p <
0.001), and gender (t = 0.03, t9 = 4.71, p =
0.001). Whereas there was some relationship
between neuroanatomical feature similarity
extracted by VAE and Diagnostic Statistical
Manual IV (DSM IV) behavioral subtypes (t =
0.03, t9 = 4.77, p = 0.001), there was no rela-
tionship with autism severity (ADOS total; t =
0.00, t9 = −1.08, p = 0.310) or Vineland adap-
tive behavior scores (t = 0.00, t9 = −0.29, p =
0.780). This is consistent with the idea pres-
ented above that entangled measures of neu-
roanatomy (such as VAE features) may fail to
capture variation in symptoms.
We then assessed whether disentangling

ASD-specific and shared neuroanatomical var-
iation with a CVAE would allow us to identify
clinically relevant individual variation. As de-
scribed above, the CVAE segregates its internal
representations into ASD-specific and shared
features (Fig. 1A and fig. S2). Although the
CVAE training implicitly makes a binary dis-
tinction between ASD and TC participants,
the model is not provided with any of the
clinical and nonclinical individual character-
istics of interest. We used RSA to compare the
CVAE’s ASD-specific and shared neuroana-
tomical features to each of the individual char-
acteristics. We expected to find that shared
features correlate with nonclinical variation
that is common to both ASD and TC partici-
pants, whereas ASD-specific features corre-
late with clinical ASD variation (Fig. 1B).
As expected, scanner type was associated

with subject similarity in the shared features
(t = 0.11, t9 = 253.01, p < 0.001) but not the
ASD-specific features (t = −0.01, t9 = −14.16,
p<0.001; shared versus ASD-specific:Dt = 0.12,
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t9 = 124.83, p < 0.001). Thus, the CVAE was
able to factor out a common source of “nui-
sance” variation in multisite data (10). By con-
trast, measures of ASD clinical symptomswere
more associatedwith theASD-specific features
but generally not associated with the shared
features. These includeDSM IV behavioral sub-
types (ASD-specific: t = 0.06, t9 = 30.83, p <
0.001; shared: t = 0.02, t9 = 29.02, p < 0.001;
comparison: Dt = 0.04, t9 = 20.04, p < 0.001),
ADOS total score (ASD-specific: t = 0.01, t9 =
16.85,p< 0.001; shared: t = 0.00, t9 =−1.50, p=
0.167; comparison: Dt = 0.01, t9 = 11.59, p <
0.001), and Vineland adaptive behavior ques-
tionnaire (ASD-specific: t = 0.05, t9 = 12.33, p <
0.001; shared: t = 0.00, t9 = 1.17, p = 0.270; com-
parison: Dt = 0.05, t9 = 10.46, p < 0.001) [see
also fig. S4 and supplementarymaterials (SM)].
Results for age, gender, and full-scale intel-

ligence quotient (FIQ) were of particular in-
terest, because these are known to differently
relate to neuroanatomy in the TC and ASD
populations (15). Each of these properties was

significantly related to both the ASD-specific
features (age: t = 0.05, t9 = 48.60, p < 0.001;
gender: t = 0.02, t9 = 8.13, p < 0.001; FIQ: t =
0.02, t9 = 20.22, p < 0.001) and the shared fea-
tures (age: t = 0.08, t9 = 89.29, p < 0.001; gen-
der: t = 0.05, t9 = 35.34,p< 0.001; FIQ: t = 0.01,
t9 = 15.57, p < 0.001), suggesting that the CVAE
was able to disentangle general effects of age,
gender, and FIQ from those that specifically
interact with ASD. Shared features captured
greater variation in age and gender than ASD-
specific features (age: Dt = 0.03, t9 = 24.11, p <
0.001; gender: Dt = 0.03, t9 = 11.90, p < 0.001).
Conversely, variation in FIQ was more related
to ASD-specific features than to shared fea-
tures (Dt = 0.01, t9 = 12.86, p < 0.001).
In sum, the CVAE was not only able to dis-

entangle individual neuroanatomical variation
that is specific to ASD from variation that char-
acterizes the population as a whole, but these
patterns of variation were differentially asso-
ciatedwith clinical and nonclinical participant
characteristics. This contrasts with the control

VAE model, where unitary neuroanatomical
features showed weaker correlations with in-
dividual characteristics.

Generalization to an independent dataset

Generalization to a new dataset is considered
a gold-standard test of amodel. Generalization
across datasets is desirable, because a model
trained on one group of participantsmay need
to be used to inform the diagnosis of new par-
ticipants that were not included in the train-
ing dataset. To test generalization, we applied
the ABIDE-trained CVAE to the anatomical
scans of participants from the Simons Foun-
dation Autism Research Initiative (SFARI)
Variation in Individuals Project (VIP) dataset
(N = 121) (16) using a parameter-free fit (with-
out retraining or transfer-learning).
Evaluating the performance of the model

with this new dataset—collected by different
researchers at different facilities—provides a
more stringent test of generalization than
does cross-validation [compare (17)]. However,
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Fig. 1. Neuroanatomical feature models. (A) Neuroanatomical features
extracted from the autoencoders are used to construct neuroanatomical
similarity matrices. (B) Neuroanatomical similarity matrices are compared with
similarity based on different participant properties. Variables common to TC
and ASD participants are best captured by the shared CVAE features, and
variables associated with ASD-related variation are best captured by the
ASD-specific features. Model fit for the control model (VAE) is worse across all
variables. Red horizontal lines 95% confidence intervals. PCA, principal
components analysis; DSM IV TR, DSM IV Text Revision. (C) Zero-free-parameter
generalization. The results generalize to a new dataset (SFARI) without the

need for additional fitting; in addition, participants with the same CNV associated
with increased risk of ASD (16p11.2 deletion or duplication) are more similar in
ASD-specific, but not shared, neuroanatomical features. Red vertical lines
indicate 95% confidence intervals. (D) Optimal clustering. Individual variation in
ASD-specific features is best captured by a single cluster, whereas variation in
the shared features is best captured by three clusters. Scatterplots show
individual subjects’ neuroanatomical data from ABIDE (purple) and
SFARI (orange) datasets projected onto uniform manifold approximation and
projection (UMAP) dimensions computed from the shared and ASD-specific
features. *p < 0.05; ***p < 0.0001.
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ensuring that a machine-learning model will
generalize to an arbitrary new dataset (or in-
deed, ensuring that any scientific finding will
generalize) remains a difficult problem; more
extensive testing of the generalizability of the
results will require additional datasets.
SFARI VIP includes information about ASD-

relevant copy number variations (CNVs),
allowing us to study whether ASD-specific
neuroanatomical features correlate with geno-
type. We performed analyses on the indepen-
dent SFARI dataset that were identical to those
performed on the ABIDE dataset, extracting
shared and ASD-specific features and com-
paring neuroanatomical feature similarities
in shared and ASD-specific features to subject
properties similarities in scanner type, age,
gender, DSM IV behavioral subtypes, and
genotype.
We expected that if CVAE features were

robust, then shared features should again dif-

ferentially correlate with properties of scanning
site, age, and gender, whereas ASD-specific
features should correlate with ASD-related
properties such as DSM IV subtypes. Results
confirmed these predictions. Compared with
ASD-specific features, shared features corre-
lated better with scanner type (Dt = 0.09, t9 =
12.81, p < 0.001), age (Dt = 0.06, t9 = 15.09, p <
0.001), and gender (Dt = 0.01, t9 = 3.17, p =
0.011). By contrast, ASD-specific features
correlated better with DSM IV behavioral
subtypes (Dt = 0.01, t9 = 2.34, p = 0.044),
suggesting that CVAE identified population-
wide patterns of neuroanatomy, some of
which are shared by all participants and some
of which are only present in those with ASD.
Additionally, the SFARI VIP dataset allowed

us to ask whether neuroanatomical differ-
ences observed in 16p11.2 deletion and dup-
lication carriers are consistent with patterns
of variation in the typically developing popu-

lation or whether they match patterns of var-
iation within ASD. Similarity between deletion
and duplication CNVs was better reflected in
ASD-specific features than in shared features
(Dt = 0.05, t9 = 14.54, p < 0.001). We note that
the neuroanatomical phenotypes associated
with these CNVs are likely only a subset of
ASDmore broadly: More than 200 CNVs have
been associated with autism (1, 5). The future
development of larger genotyped datasets will
be crucial for further advances.

The nature of variation

Researchers have debated whether individual
differences in ASD are better understood as
distinct subtypes or as variation along con-
tinuous dimensions (6). Having identified
ASD-specific features makes it possible to test
these hypotheses directly. We used Gaussian
mixturemodeling to identify clusters of subjects
based on each set of features, selecting the
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Fig. 2. Anatomical loci of individual variation within the ASD group. (A) For
each ASD subject, we calculated a synthetic TC-twin brain matched on ASD-
unrelated (shared) neuroanatomical features and morphed it into the corresponding
ASD brain, obtaining a deformation field. We then applied principal components
analysis to the Jacobian determinants of the deformation fields across participants.
(B) Areas showing volumetric increases (red) and decreases (blue) associated
with the two PCs that explain most variance. White matter effects are reported in
fig. S8; analyses using diffusion weighted imaging will be needed to determine

more precisely which specific tracts are affected. ACC, anterior cingulate cortex;
ATL, anterior temporal lobe; dlPFC, dorsolateral prefrontal cortex; IFG, inferior
frontal gyrus; ITG/MTG, inferior and middle temporal gyrus; L hem., left
hemisphere; lingual g., lingual gyrus; M1, motor cortex; mPFC, medial prefrontal
cortex; OFC, orbitofrontal cortex; OP, occipital pole; PCC, posterior cingulate
cortex; PREC, precuneus; pSTS, posterior superior temporal sulcus; R hem., right
hemisphere; S1, somatosensory cortex; THAL, thalamus; TPJ, temporoparietal
junction; vmPFC, ventromedial prefrontal cortex.
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optimal number of clusters using the Bayesian
information criterion (BIC) (Fig. 1D).
Because CVAEs and VAEs are probabilistic,

we determined the optimal number of clusters
for 100 samples of the latent features (see SM).
The subjects’ VAE features were consistent
with a single cluster in 100% of samples (p <
0.01; Fig. 1D). The CVAE results were more
nuanced. For shared features, 100% of sam-
ples indicated multiple clusters (p < 0.01).
However, the subject distribution based on
the ASD-specific features again suggested con-
tinuous variation, with 100% of samples in-
dicating a single cluster (p < 0.01). Thus, the
results of cluster analysis show that once dis-
entangled from typical variation, ASD-related
neuroanatomical variation is better captured
by continuous dimensions rather than by dis-
crete categories. This conclusion applies to the
neuroanatomical data considered here; other
datasets (e.g., functional imaging datasets)
might reveal multiple clusters.

Neuroanatomical interpretation

To identify loci of anatomical variation be-
tween ASD subjects, we followed a three-step
process. First, for each ASD participant, we
reconstructed their brain using only the
“shared” features that represent individual
variation that is independent of diagnosis.
(Technically, we set the ASD-specific feature
values to zero before using the CVAE decoder.)
The result is a “synthetic TC twin”: a simulated
brain matched to the original ASD participant
but lacking any features that our analyses
identified as ASD specific. This synthetic
twin is effectively a data-driven case control.
In the second step, we estimated a nonrigid
transformation that morphs the counter-
factual TC brain to match the corresponding
ASD participant’s brain. This produced a vec-
tor field that described the differences be-
tween the ASD brain and the corresponding
TC brain (see SM). Finally, we calculated the
Jacobian determinant of the vector field. This
measure captures the local volumetric com-
pression and expansion needed to morph the
simulated TC brain into the corresponding
ASD brain. Repeating this procedure for all
participants, we computed interpretable gray
and white matter alterations that vary across
the ASD participant population.
To organize the search of interpretable

neuroanatomical features, we calculated the
first two principal components (PCs) of the
Jacobian maps across all ASD participants
(N = 470). We then measured systematic
variation in the compression and expansion
of different brain regions along each PC by
computing, for each voxel, the correlation
between the PC loadings for that voxel and
the Jacobian determinants (Fig. 2; maps
thresholded at p < 0.05, Bonferroni corrected).
By focusing on the two PCs that account for

most variance (~20%), we simplify interpre-
tation and reduce the number of comparisons.
We note that although detecting intensity
contrasts is comparatively more difficult in
some areas (e.g., thalamus), this is a common
feature for both TC and ASD brains; attendant
variation should be captured by the shared
features, not ASD-specific features.
To test the correspondence between the

anatomical PCs and behavioral symptoms in
different cognitive domains, we correlated the
PC loadings with scores in ADOS communica-
tion, ADOS social, and ADOS stereotyped be-
haviors. The first PC positively correlated with
the ADOS communication instrument (t342 =
0.09, p = 0.017) and with the stereotyped be-
havior instrument (t283 = 0.10, p = 0.023) but
not with the ADOS social instrument (t343 =
0.06, p = 0.136). The second PC correlated
positively with the ADOS communication in-
strument (t342 = 0.08, p = 0.039) but not with
the ADOS repetitive behavior (t283 = −0.06, p=
0.155) or social instruments (t343 = −0.04, p =
0.259). A limitation of this analysis is that it
relies on relatively coarse measures of behav-
ior. Finer-grained measures of behavior that
cover a broad range of cognitive abilities will
be needed to identify relationships between
anatomical dimensions and more-specific
symptoms. This could help clarify, for in-
stance, the importance of the volumetric
changes to areas related to social cognition
in the second PC (fig. S9) and of volumetric
changes to Broca’s area (left inferior frontal
gyrus) in the first PC.
Previous work has found neuroanatomical

differences between ASD participants and TCs
that vary with age (18–20), and earlier in this
text we reported that ASD-specific features
do indeed correlate with age (Fig. 1). How-
ever, this was not the largest source of ASD-
specific individual differences: The first two
neuroanatomical PCs were not related to age
(PC1: t468 = 0.06, p = 0.064; PC2: t468 = 0.04,
p = 0.159). Clarifying age-related differences
within ASD will require more-sensitive analy-
ses, perhaps involving longitudinal data, which
can have more precision for detecting age-
related differences.

Discussion

These results demonstrate that disentangling
ASD-specific variation in neuroanatomy from
shared variation reveals correlations between
individual differences at the level of brain
structure and differences in symptoms as
well as genetics. We find that ASD-specific
features can be disentangled using a data-
driven approach (CVAEs) that generalizes
to new datasets without the need for ad-
ditional training. This property facilitates its
application in diagnostic settings, in which a
model trained on previous cases can be used
to analyze the data from new individuals.

Note that these results represent a floor: Even
more powerful models trained on larger data-
sets and higher-resolution inputs may identify
additional, more subtle patterns. Although in
this study we used CVAEs to analyze anatom-
ical data in the context of ASD, the approach is
broadly applicable to other data modalities
(e.g., behavioral data, functional imaging) and
to other psychiatric disorders.
Individual variation within ASD was better

captured by continuous dimensions than by
multiple distinct clusters, indicating that—
at least at the level of neuroanatomy—
dimensional approaches can provide a better
account of individual variation than discrete
diagnostic categories. It remains possible, how-
ever, that functional neuroimaging or genetic
data will reveal clusters that are not apparent
in the anatomical data.
Previous work has demonstrated that ana-

tomical changes associated with ASD vary
across different ages (18–20). Here, we found
that age correlates not only with anatomical
features shared with typical controls but also
to some extent with ASD-specific features,
consistent with the existence of ASD-specific
patterns of age-dependent changes in anat-
omy. Multiple possible causes of volumetric
changes have been hypothesized in previous
studies, including differences in cell prolif-
eration (21) or in soma size and dendrite
length (22). Clarifying the structural causes
and functional consequences of volumetric
changes remains a critical open question in
human neuroscience.
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Brain structure in ASD
Autism spectrum disorder (ASD) may be characterized by impaired social interactions, but persons with ASD also
struggle with a variety of other behavioral and intellectual difficulties. Are individual differences better understood
as ASD subtypes or as continuous variation? Aglinskas et al. analyzed magnetic resonance imaging brain scans to
look for brain differences that can be attributed to ASD and not to other causes of individual variation. The authors
found evidence for continuous variation and identified two axes of variation in brain structure. Such clarity about ASD
variation may help to fine-tune interventions for individual patients. —PJH
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